Compare commits
No commits in common. "2ddc195b735a7f6d9d2a6a10b9bfe1a166abc114" and "c52caca8449c5fa0a83bcca522f7f31370166623" have entirely different histories.
2ddc195b73
...
c52caca844
@ -44,18 +44,3 @@ exercises:
|
|||||||
tests:
|
tests:
|
||||||
- "add_last_two_not_enough"
|
- "add_last_two_not_enough"
|
||||||
- "add_last_two_enough"
|
- "add_last_two_enough"
|
||||||
- "dup_top_empty"
|
|
||||||
- "dup_top_has_value"
|
|
||||||
- "median_already_sorted"
|
|
||||||
- "median_shuffled"
|
|
||||||
- "median_empty"
|
|
||||||
compute:
|
|
||||||
required_files:
|
|
||||||
- "src/vec.rs"
|
|
||||||
- "src/vec/compute.rs"
|
|
||||||
tests:
|
|
||||||
- "compute_empty"
|
|
||||||
- "compute_too_many_ops"
|
|
||||||
- "compute_division_by_zero_push"
|
|
||||||
- "compute_division_by_zero_operation"
|
|
||||||
- "compute_all_ops"
|
|
||||||
|
|||||||
@ -1,2 +1 @@
|
|||||||
pub mod access;
|
pub mod access;
|
||||||
pub mod compute;
|
|
||||||
|
|||||||
@ -1,37 +1,10 @@
|
|||||||
/// Add the last two numbers of the input slice.
|
/// Add the last two numbers of the input slice.
|
||||||
///
|
///
|
||||||
/// # Return value
|
/// If the slice is not large enough, return `None`
|
||||||
/// `None` if the slice is not large enough
|
/// If it is, return the computed value in a `Some`
|
||||||
/// `Some(result)` if the slice has at least 2 elements
|
|
||||||
pub fn add_last_two(v: &[f32]) -> Option<f32> {
|
pub fn add_last_two(v: &[f32]) -> Option<f32> {
|
||||||
match v.last_chunk() {
|
match v.last_chunk() {
|
||||||
Some([a, b]) => Some(a + b),
|
Some([a, b]) => Some(a + b),
|
||||||
None => None,
|
None => None,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Duplicate the top element from the stack if it exist
|
|
||||||
/// (the stack is represented as a Vec with top == last)
|
|
||||||
///
|
|
||||||
/// # Return value
|
|
||||||
/// `Some(())` if the operation succeeded
|
|
||||||
/// `None` if not
|
|
||||||
pub fn dup_top(v: &mut Vec<f32>) -> Option<()> {
|
|
||||||
match v.last() {
|
|
||||||
Some(last) => {
|
|
||||||
v.push(*last);
|
|
||||||
return Some(());
|
|
||||||
}
|
|
||||||
_ => return None,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Compute the median of a slice in place (if the slice was sorted, it would be the middle element)
|
|
||||||
pub fn median(v: &[i32]) -> Option<i32> {
|
|
||||||
let mut tmp = v.to_vec();
|
|
||||||
tmp.sort();
|
|
||||||
match tmp.get(tmp.len() / 2) {
|
|
||||||
Some(&r) => Some(r),
|
|
||||||
None => None,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|||||||
@ -1,48 +0,0 @@
|
|||||||
pub enum Operation {
|
|
||||||
Push(f32),
|
|
||||||
Binary(Binary),
|
|
||||||
}
|
|
||||||
|
|
||||||
pub enum Binary {
|
|
||||||
Add,
|
|
||||||
Sub,
|
|
||||||
Mul,
|
|
||||||
Div,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(PartialEq, Debug)]
|
|
||||||
pub enum ComputeError {
|
|
||||||
NotEnoughData,
|
|
||||||
DivisionByZero,
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn compute(operations: &[Operation]) -> Result<f32, ComputeError> {
|
|
||||||
let mut stack = vec![];
|
|
||||||
for operation in operations {
|
|
||||||
match operation {
|
|
||||||
Operation::Push(n) => stack.push(*n),
|
|
||||||
Operation::Binary(op) => {
|
|
||||||
let b = stack.pop();
|
|
||||||
let a = stack.pop();
|
|
||||||
|
|
||||||
let r = match (a, b) {
|
|
||||||
(Some(a), Some(b)) => match op {
|
|
||||||
Binary::Add => a + b,
|
|
||||||
Binary::Mul => a * b,
|
|
||||||
Binary::Div => {
|
|
||||||
if b == 0.0 {
|
|
||||||
return Err(ComputeError::DivisionByZero);
|
|
||||||
}
|
|
||||||
a / b
|
|
||||||
}
|
|
||||||
Binary::Sub => a - b,
|
|
||||||
},
|
|
||||||
_ => return Err(ComputeError::NotEnoughData),
|
|
||||||
};
|
|
||||||
stack.push(r);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
stack.pop().ok_or(ComputeError::NotEnoughData)
|
|
||||||
}
|
|
||||||
@ -9,31 +9,3 @@ pub fn add_last_two_not_enough() {
|
|||||||
pub fn add_last_two_enough() {
|
pub fn add_last_two_enough() {
|
||||||
assert_eq!(access::add_last_two(&[1.0, 2.0, 3.0]), Some(5.0));
|
assert_eq!(access::add_last_two(&[1.0, 2.0, 3.0]), Some(5.0));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn dup_top_empty() {
|
|
||||||
let mut empty = vec![];
|
|
||||||
assert!(access::dup_top(&mut empty).is_none());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn dup_top_has_values() {
|
|
||||||
let mut empty = vec![1.0, 2.0];
|
|
||||||
assert!(access::dup_top(&mut empty).is_some());
|
|
||||||
assert_eq!(empty, &[1.0, 2.0, 2.0]);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn median_already_sorted() {
|
|
||||||
assert_eq!(access::median(&[1, 2, 3]), Some(2));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn median_shuffled() {
|
|
||||||
assert_eq!(access::median(&[420, 69, 128]), Some(128));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn median_empty() {
|
|
||||||
assert_eq!(access::median(&[]), None);
|
|
||||||
}
|
|
||||||
|
|||||||
@ -1,58 +0,0 @@
|
|||||||
use subject_source::vec::compute::*;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn compute_empty() {
|
|
||||||
assert_eq!(compute(&[]), Err(ComputeError::NotEnoughData));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn compute_too_many_ops() {
|
|
||||||
assert_eq!(
|
|
||||||
compute(&[Operation::Push(1.0), Operation::Binary(Binary::Add)]),
|
|
||||||
Err(ComputeError::NotEnoughData)
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn compute_division_by_zero_push() {
|
|
||||||
assert_eq!(
|
|
||||||
compute(&[
|
|
||||||
Operation::Push(1.0),
|
|
||||||
Operation::Push(0.0),
|
|
||||||
Operation::Binary(Binary::Div)
|
|
||||||
]),
|
|
||||||
Err(ComputeError::DivisionByZero)
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn compute_division_by_zero_operation() {
|
|
||||||
assert_eq!(
|
|
||||||
compute(&[
|
|
||||||
Operation::Push(1.0),
|
|
||||||
Operation::Push(1.0),
|
|
||||||
Operation::Push(1.0),
|
|
||||||
Operation::Binary(Binary::Sub),
|
|
||||||
Operation::Binary(Binary::Div)
|
|
||||||
]),
|
|
||||||
Err(ComputeError::DivisionByZero)
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
pub fn compute_all_ops() {
|
|
||||||
assert_eq!(
|
|
||||||
compute(&[
|
|
||||||
Operation::Push(1.0),
|
|
||||||
Operation::Push(3.0),
|
|
||||||
Operation::Push(2.0),
|
|
||||||
Operation::Binary(Binary::Sub),
|
|
||||||
Operation::Push(5.0),
|
|
||||||
Operation::Binary(Binary::Mul),
|
|
||||||
Operation::Binary(Binary::Add),
|
|
||||||
Operation::Push(2.0),
|
|
||||||
Operation::Binary(Binary::Div),
|
|
||||||
]),
|
|
||||||
Ok(3.0),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
@ -1,66 +0,0 @@
|
|||||||
---
|
|
||||||
name = "Accessing values"
|
|
||||||
file = "src/vec/access.rs"
|
|
||||||
---
|
|
||||||
|
|
||||||
Instead of using the good old C-style bound checking:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
if vec.len() < 1 {
|
|
||||||
return None;
|
|
||||||
} else {
|
|
||||||
// compiler still thinks this line can panic
|
|
||||||
return vec[0];
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
Try to implement these functions using non-panicking methods like [`last`](https://doc.rust-lang.org/std/primitive.slice.html#method.last), [`last_chunk`](https://doc.rust-lang.org/std/primitive.slice.html#method.last_chunk), or [`get`](https://doc.rust-lang.org/std/primitive.slice.html#method.get).
|
|
||||||
|
|
||||||
> ## note
|
|
||||||
> Don't be afraid of the `get` function prototype, look at the examples, they are fairly simple, it's just that `get` can work on multiple types, allowing for slice indexing as well as single element indexing.
|
|
||||||
|
|
||||||
> ## note
|
|
||||||
> You may want to look at the [`sort`](https://doc.rust-lang.org/std/primitive.slice.html#method.sort) and [`to_vec`](https://doc.rust-lang.org/std/primitive.slice.html#method.to_vec) functions for the median.
|
|
||||||
|
|
||||||
```prototype
|
|
||||||
/// Add the last two numbers of the input slice.
|
|
||||||
///
|
|
||||||
/// # Return value
|
|
||||||
/// `None` if the slice is not large enough
|
|
||||||
/// `Some(result)` if the slice has at least 2 elements
|
|
||||||
pub fn add_last_two(v: &[f32]) -> Option<f32> {
|
|
||||||
unimplemented!()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Duplicate the top element from the stack if it exist
|
|
||||||
/// (the stack is represented as a Vec with top == last)
|
|
||||||
///
|
|
||||||
/// # Return value
|
|
||||||
/// `Some(())` if the operation succeeded
|
|
||||||
/// `None` if not
|
|
||||||
pub fn dup_top(v: &mut Vec<f32>) -> Option<()> {
|
|
||||||
unimplemented!()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Compute the median of a slice in place (if the slice was sorted, it would be the middle element)
|
|
||||||
pub fn median(v: &[i32]) -> Option<i32> {
|
|
||||||
unimplemented!()
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
```example
|
|
||||||
fn main() {
|
|
||||||
assert_eq!(add_last_two(&[]), None);
|
|
||||||
assert_eq!(add_last_two(&[10.0]), None);
|
|
||||||
assert_eq!(add_last_two(&[1.0, 2.0, 3.0]), Some(5.0));
|
|
||||||
|
|
||||||
let mut stack = vec![1.0];
|
|
||||||
assert!(dup_top(&mut stack).is_some());
|
|
||||||
assert_eq!(&stack, &[1.0, 1.0]);
|
|
||||||
|
|
||||||
stack.clear();
|
|
||||||
assert!(dup_top(&mut stack).is_none());
|
|
||||||
|
|
||||||
assert_eq!(median(&[2, 1, 3]), Some(2));
|
|
||||||
}
|
|
||||||
```
|
|
||||||
@ -6,8 +6,29 @@ exercises = ["access.md"]
|
|||||||
|
|
||||||
Let's now look at some functions on [`slice`](https://doc.rust-lang.org/std/primitive.slice.html)s and [`Vec`](https://doc.rust-lang.org/std/vec/struct.Vec.html)s. Instead of manualy checking things we will follow the type system using `Option`s and `Result`s we saw earlier.
|
Let's now look at some functions on [`slice`](https://doc.rust-lang.org/std/primitive.slice.html)s and [`Vec`](https://doc.rust-lang.org/std/vec/struct.Vec.html)s. Instead of manualy checking things we will follow the type system using `Option`s and `Result`s we saw earlier.
|
||||||
|
|
||||||
> ## note
|
```note
|
||||||
> Slices (`[T]`) represent some memory space containing an arbitrary number of elements of type `T`. Since they don't have a size known at compilation time, we can only access them through pointers, commonly `&[T]` (references to slices).
|
Slices (`[T]`) represent some memory space containing an arbitrary number of elements of type `T`. Since they don't have a size known at compilation time, we can only access them through pointers, commonly `&[T]` (references to slices).
|
||||||
|
```
|
||||||
|
|
||||||
|
```deepening
|
||||||
|
`Vec<T>` can be seen as [owned](https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html) `[T]`, it means that every function working on a `&[T]` can work on a `&Vec<T>`.
|
||||||
|
```
|
||||||
|
|
||||||
|
```prototype
|
||||||
|
/// Add the last two numbers of the input slice.
|
||||||
|
///
|
||||||
|
/// If the slice is not large enough, return `None`
|
||||||
|
/// If it is, return the computed value in a `Some`
|
||||||
|
pub fn add_last_two(v: &[f32]) -> Option<f32> {
|
||||||
|
unimplemented!()
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
```example
|
||||||
|
fn main() {
|
||||||
|
assert_eq!(add_last_two(&[]), None);
|
||||||
|
assert_eq!(add_last_two(&[10.0]), None);
|
||||||
|
assert_eq!(add_last_two(&[1.0, 2.0, 3.0]), Some(5.0));
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
> ## deepening
|
|
||||||
> `Vec<T>` can be seen as [owned](https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html) `[T]`, it means that every function working on a `&[T]` can work on a `&Vec<T>`.
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user